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Abstract. We prove that domain unification, when viewed as a
suitable transformation between two convenient institutions, rep-
resents the theorem of Herbrand-Schmidt-Wang encoding many-
sorted first-order logic into single-sorted first-order logic.

1. Introduction

Before describing the theorem of Herbrand-Schmidt-Wang (first in-
formally and then under the formal shape in which this theorem will
be used in this article), we notice that from now on we tacitly assume
that the terms “heterogeneous” and “many-sorted”, on the one hand,
and the terms “homogeneous” and “single-sorted”, on the other hand,
are synonymous.

As it is well-known, the theorem of Herbrand-Schmidt-Wang (see [9],
[15], and [16]) about the reduction of heterogeneous first-order logic to
homogeneous first-order logic, states that, for a heterogeneous first-
order signature S and a heterogeneous S-theory T, given a sentence of
T and a proof for it in T, there is an effective way of finding a proof in T′,
the homogenization of T, for its translation in T′; and conversely, given
a sentence of T′ which has a translation in T, and given a proof for it
in T′, there is an effective way of finding a proof in T for its translation
in T. However, the concrete and explicit formulation of the theorem
of Herbrand-Schmidt-Wang, which has been extracted from [14], pp.
483–485, and which will be used in the last section of this article, is the
following:
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(1) To every heterogeneous first-order signature S (see Section 2
for the definition of this notion) we associate, in a natural way,
a homogeneous signature DU(S) (see Section 4). Moreover, for
each heterogeneous first-order signature S, there is a syntactical
translation ®S (see Section 4 for its definition) taking each het-
erogeneous formula ' of S into a homogeneous formula ®S(')
of the associated homogeneous signature DU(S).

(2) There is, for every heterogeneous first-order signature S, a se-
mantical translation ¯S (see Section 4 for its definition), taking
each pointed heterogeneous S-algebraic system A (see Section 2
for its definition) into a homogeneous DU(S)-algebraic system
¯S(A). Moreover, for each pointed heterogeneous S-algebraic
system A, ¯S(A) is a model of Φ(S), where Φ(S) is the set of
all of the following homogeneous DU(S)-sentences:
(a) ∃v ¼s(v), for each s ∈ S, where S is the underlying set of

sorts of the heterogeneous first-order signature S;
(b) ∀v0, . . . , vn−1(

⋀
i∈n ¼wi

(vi) → ¼s(¾(v0, . . . , vn−1))), for each
heterogeneous operation symbol ¾ of biarity ((wi)i∈n, s).

Furthermore, let x ∈ ∏
s∈S A

ℕ
s . Then we have that A ∣=Ht

S '[x]
iff ¯S(A) ∣=Hm

DU(S) ®S(')[x], where ∣=Ht
S is the heterogeneous sat-

isfaction relation for S and ∣=Hm
DU(S) the homogeneous satisfaction

relation for DU(S).
Concerning the theorem of Herbrand-Schmidt-Wang, J. Hook in [10],

p. 372, said the following: “Whenever many-sorted theories are dis-
cussed in logic texts (e.g., [14], pp. 483–485), it is fashionable to ob-
serve that every many-sorted theory T can be effectively replaced by
an equally powerful one-sorted theory T ∗. . . . This observation suggests
that perhaps many-sorted theories are no more useful than one-sorted
theories. That this is not always the case has been pointed out previ-
ously ([4], p. 13 (for the theorems of interpolation, we add)).” In [10]
Hook proves that U can be interpretable in T without U∗ being in-
terpretable in T ∗. Therefore the heterogeneous theories are not an
inessential variation of the homogeneous theories, at least to the ex-
tent that ensuring the consistency of a theory has not, in general, been
a trivial task ever since it was highlighted by Hilbert in 1900 at the
Second International Congress of Mathematicians in Paris.

Our main goal in this article is to prove that there exists a transfor-
mation between institutions, founded on the concept of domain unifi-
cation, representing the theorem of Herbrand-Schmidt-Wang. To this
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end we should begin by defining two convenient institutions, one of
them associated with the many-sorted first-order logic and the other
associated with the single-sorted first-order logic, and by defining a
suitable notion of morphism (or transformation) between institutions
under which falls the encoding of many-sorted first-order logic into
single-sorted first-order logic. But before doing that, for the conve-
nience of the reader, we start by reviewing the relevant material about
institutions and we continue by introducing those notions and construc-
tions on many-sorted sets, signatures, and algebras which will be used
afterwards, thus making our exposition as self-contained as possible.

The theory of institutions of Goguen and Burstall, which arose within
theoretical computer science, in response to the proliferation of logics
in use there, is a categorial formalization of the semantic or model-
theoretical aspect of the intuitive notion of “logical system”, and it has
as objectives, according to Goguen and Burstall in [7]: “(1) To support
as much computer science as possible independently of the underlying
logical system, (2) to facilitate the transfer of results (and artifacts
such as theorem provers) from one logical system to another, and (3)
to permit combining a number of different logical systems”.

We recall in passing that the concept of institution, as defined in [6],
has, to the best of our knowledge, two direct logical ancestors. One
of them, due to S. Feferman (relatively forgotten and, apparently, un-
known by computer scientists), has to do with the concept of regular
model-theoretic language, defined in [5], pp. 155–156. The other, due
to J. Barwise (known by some computer scientists), has to do with the
concept of a logic, defined in [1], pp. 234–235.

Our next goal is to recall that Goguen and Burstall in [6], p. 229,
define an institution as a category Sign, of signatures, a functor Sen
from Sign to Set, giving the set of sentences over a given signature,
a functor Mod from Sign to Catop, giving the category of models of a
given signature, and, for each Σ ∈ Sign, a satisfaction relation ∣=Σ⊆
∣Mod(Σ)∣ × Sen(Σ), where ∣⋅∣ is the endofunctor of Cat which sends
a category to the discrete category on its set of objects, such that, for
each morphism ' : Σ //Σ′, the

Satisfaction Condition. M′ ∣=Σ′ '(e) iff '(M′) ∣=Σ e,

holds for each M′ ∈ ∣Mod(Σ′)∣ and each e ∈ Sen(Σ). (Let us notice the
abuse of notation on the part of Goguen and Burstall about “'(e)” and
“'(M′)” in their formulation of the Satisfaction Condition. They
should literally be “Sen(')(e)” and “Mod(')(M′)”, respectively.)
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Concerning the functor Mod from Sign to Catop we recall that to
give such a functor is equivalent to give a functor from Signop to Cat.
This is so since to give a contravariant functor F from a category A to
another B is equivalent to give a covariant functor from Aop to B, or
to give a covariant functor from A to Bop (see, e.g., [12], pp. 33–35).

On the other hand, the literature investigates several types of mor-
phisms between institutions, see, e.g., [8], each of them playing a specific
role in applications. In this article the morphisms from an institution
I to another I′ (both of them understood as in [6], p. 229, but adopt-
ing, from now on, the convention that the functors Mod and Mod′ will
be regarded as functors from Signop and Sign′op to Cat, respectively)
which we will use, called transformations, are precisely the ordered
triples (F, ®, ¯), where F is a functor from Sign to Sign′, ® a natural
transformation from Sen to Sen′ ∘ F , or diagrammatically:

Sign

F

¿¿9
99

99
99

99
99

99
99

99
9

Sen

''

Sen′ ∘ F

77 Set
ÂÂ ÂÂ
®¶ ®

Sign′
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CC§§§§§§§§§§§§§§§§§§

and ¯ a natural transformation from Mod to Mod′ ∘ F op, where F op is
the functor from the dual of Sign to the dual of Sign′, or diagrammat-
ically:

Signop

F op
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<<
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Mod
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Mod′ ∘ F op

66 Cat
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such that the following satisfaction condition holds:

A ∣=Σ ' iff ¯Σ(A) ∣=F (Σ) ®Σ('),
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for any Σ ∈ Sign, any A ∈ Mod(Σ), and any ' ∈ Sen(Σ).
We now proceed to state the basic assumptions which will be needed

through the article and to recall those concepts and constructions on
many-sorted sets, signatures, and algebras which will be used in the
following sections.

Every set we consider in this article, unless otherwise stated, will be
a 퓤 -small set or a 퓤 -large set, i.e., an element or a subset, respectively,
of a Grothendieck universe 퓤 (as defined, e.g., in [12], p. 22), fixed once
and for all. Besides, we agree that Set denotes the category which has
as set of objects 퓤 and as set of morphisms the subset of 퓤 of all
mappings between 퓤 -small sets, and that Cat denotes the category of
the 퓤 -categories (i.e., categories C such that the set of objects of C is a
subset of the Grothendieck universe 퓤 , and the hom-sets of C elements
of 퓤), and functors between 퓤 -categories. Moreover, we choose, once
and for all, a countably infinite set of variables V = { vn ∣ n ∈ ℕ }.

We agree upon calling, henceforth, for a set of sorts S ∈ 퓤 , the
objects of the category SetS (i.e., the elements A = (As)s∈S of 퓤S, the
set of all functions from S to 퓤) S-sorted sets ; and the morphisms of the
category SetS from an S-sorted set A into another B (i.e., the ordered
triples (A, f,B), abbreviated to f : A //B, where f is an element of∏

s∈S Hom(As, Bs)) S-sorted mappings from A to B.
Let k : S //T be a mapping, then we will denote by Δk the functor

from SetT to SetS defined as follows: its object mapping sends each
T -sorted set A to the S-sorted set Ak = (Ak(s))s∈S, i.e., the compo-
site mapping A ∘ k; its arrow mapping sends each T -sorted mapping
f : A //B to the S-sorted mapping fk = (fk(s))s∈S : Ak

//Bk.
The category MSet, of many-sorted sets and many-sorted mappings

has as objects the pairs (S,A), where S is a set and A an S-sorted
set, and as morphisms from (S,A) to (T,B) the pairs (k, f), where
k : S //T and f : A //Bk.

Our next goal is to define the category Sig, of many-sorted signa-
tures. But before doing that we agree that, for a set of sorts S in 퓤 ,
Sig(S) denotes the category of S-sorted signatures and S-sorted signa-
ture morphisms, i.e., the category SetS

★×S, where S★ is the underlying
set of S★, the free monoid on S. Therefore an S-sorted signature is
a function Σ from S★ × S to 퓤 which sends a pair (w, s) ∈ S★ × S
to the set Σw,s of the formal operations of arity w, sort (or coar-
ity) s, and biarity (w, s); and an S-sorted signature morphism from
Σ to Σ′ is an ordered triple (Σ, d,Σ′), written as d : Σ //Σ′, where
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d = (dw,s)(w,s)∈S★×S ∈ ∏
(w,s)∈S★×S Hom(Σw,s,Σ

′
w,s). Thus, for every

(w, s) ∈ S★ × S, dw,s is a mapping from Σw,s to Σ′
w,s which sends a

formal operation ¾ in Σw,s to the formal operation dw,s(¾) (d(¾) for
short) in Σ′

w,s.

Remark. For a set of sorts S in 퓤 , to give an S-sorted signature Σ, i.e.,
a function from S★×S to 퓤 is, essentially, equivalent to give an ordered
triple (Σ, ar, car), where Σ ∈ 퓤 , ar is a mapping from Σ to S★, and car
a mapping from Σ to S. Moreover, to give an S-sorted signature mor-
phism d from Σ to Σ′, i.e., an element of

∏
(w,s)∈S★×S Hom(Σw,s,Σ

′
w,s),

is, essentially, equivalent to give a mapping d from Σ to Σ′ such that
arΣ = arΣ′ ∘d and carΣ = carΣ′ ∘d. These facts will be used afterwards.

Remark. If the cardinality of S is 1, i.e., if S is a final set in 퓤 , then,
since S★×S ∼= ℕ, we have that Sig(S) is, essentially, the category Setℕ,
of single-sorted signatures. Hence a single-sorted signature is a function
Σ from ℕ to 퓤 which sends a natural number n ∈ ℕ to the set Σn of the
formal operations of arity n; and a single-sorted signature morphism
from Σ to Σ′ is an ordered triple (Σ, d,Σ′), written as d : Σ //Σ′,
where d = (dn)n∈ℕ is a choice function for (Hom(Σn,Σ

′
n))n∈ℕ, i.e., d =

(dn)n∈ℕ ∈ ∏
n∈ℕHom(Σn,Σ

′
n). Thus, for every natural number n ∈ ℕ,

dn is a mapping from Σn to Σ′
n which sends a formal operation ¾ in

Σn to the formal operation dn(¾) (d(¾) for short) in Σ′
n. To this we

add that to give a single-sorted signature Σ, i.e., a function from ℕ
to 퓤 is, essentially, equivalent to give an ordered pair (Σ, ar), where
Σ ∈ 퓤 and ar is a mapping from Σ to ℕ. On the other hand, to give
a single-sorted signature morphism d from Σ to Σ′, i.e., an element of∏

n∈ℕHom(Σn,Σ
′
n), is, essentially, equivalent to give a mapping d from

Σ to Σ′ such that arΣ = arΣ′ ∘ d.
There exists a contravariant functor Sig from Set to Cat. Its ob-

ject mapping sends each set of sorts S to Sig(S) = Sig(S); its arrow
mapping sends each mapping k : S //T to the functor Sig(k) = Δk★×k

from Sig(T ) to Sig(S) which relabels T -sorted signatures into S-sorted
signatures, i.e., we have that

(1) Sig(k) assigns to a T -sorted signature Λ the S-sorted signature
Sig(k)(Λ) = Λk★×k(= Λ ∘ (k★ × k)), where k★ is the underlying
mapping of the monoid homomorphism from S★, the free monoid
on S, to T★, the free monoid on T , canonically associated with
the mapping k : S //T , and



THE THEOREM OF HERBRAND-SCHMIDT-WANG 7

(2) Sig(k) assigns to a morphism of T -sorted signatures d from Λ to
Λ′ the morphism of S-sorted signatures Sig(k)(d) = dk★×k from
Λk★×k to Λ′

k★×k.

The category Sig, of many-sorted signatures and many-sorted signa-
ture morphisms has as objects the pairs (S,Σ), where S is a set of sorts
and Σ an S-sorted signature and as many-sorted signature morphisms
from (S,Σ) to (T,Λ) the pairs (k, d), where k : S //T is a morphism
in Set while d : Σ //Λk★×k is a morphism in Sig(S) such that the
following diagrams commute

Σ =
∐

(w,s)∈S★×S Σw,s

∐
(w,s)∈S★×S dw,s = d

//

arΣ

²²

∐
(w,s)∈S★×S Λk★(w),k(s) = Λ

arΛ

²²
S★

k★
// T ★

where, for every (w, s) ∈ S★ ×S, arΣ sends (¾, (w, s)) ∈ Σw,s ×{(w, s)}
to w, and arΛ sends (¸, (k★(w), k(s))) ∈ Λk★(w),k(s) × {(k★(w), k(s))} to
k★(w),

Σ =
∐

(w,s)∈S★×S Σw,s

∐
(w,s)∈S★×S dw,s = d

//

carΣ

²²

∐
(w,s)∈S★×S Λk★(w),k(s) = Λ

carΛ

²²
S

k
// T

where, for every (w, s) ∈ S★×S, carΣ sends (¾, (w, s)) ∈ Σw,s×{(w, s)}
to s, and carΛ sends (¸, (k★(w), k(s))) ∈ Λk★(w),k(s) to k(s).

The composition of two many-sorted signature morphisms (k, d) from
(S,Σ) to (T,Λ) and (ℓ, e) from (T,Λ) to (U,Ω), denoted by (ℓ, e)∘(k, d),
is (ℓ ∘ k, ek★×k ∘ d), where ek★×k : Λk★×k

// (Ωℓ★×ℓ)k★×k(= Ω(ℓ∘k)★×(ℓ∘k)).
Henceforth, unless otherwise stated, we will write Σ instead of (S,Σ)
and d instead of (k, d).

Since it will be used afterwards we introduce, for a many-sorted sig-
nature Σ, an S-sorted set A, an S-sorted mapping f from A to B,
and a word w on S, i.e., an element w of S★, the following notation
and terminology. We write ∣w∣ for the length of the word w, Aw for∏

i∈∣w∣Awi
, and fw for the mapping

∏
i∈∣w∣ fwi

from Aw to Bw which
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sends (ai)i∈∣w∣ in Aw to (fwi
(ai))i∈∣w∣ in Bw. Moreover, we let OS(A)

stand for the S★ × S-sorted set (Hom(Aw, As))(w,s)∈S★×S and we call it
the S★ × S-sorted set of the finitary operations on the S-sorted set A.

We next proceed to define the category Alg of many-sorted algebras.
But before doing that we agree that, for a many-sorted signature Σ,
Alg(Σ) denotes the category of Σ-algebras (and Σ-homomorphisms).
By a Σ-algebra is meant a pair A = (A,F ), where A is an S-sorted set
and F aΣ-algebra structure on A, i.e., a morphism F = (Fw,s)(w,s)∈S★×S

in Sig(S) from Σ to OS(A) (for a pair (w, s) ∈ S★ × S and a ¾ ∈ Σw,s,
to simplify notation we let F¾ stand for Fw,s(¾)). A Σ-homomorphism
from aΣ-algebraA to anotherB = (B,G), is a triple (A, f,B), written
as f : A //B, where f is an S-sorted mapping from A to B that
preserves the structure, i.e., such that, for every (w, s) in S★×S, every
¾ in Σw,s, and every (ai)i∈∣w∣ in Aw, it happens that

fs(F¾((ai)i∈∣w∣)) = G¾(fw((ai)i∈∣w∣)).

Remark. For a single-sorted signature Σ, Alg(Σ) denotes the category
of Σ-algebras (and Σ-homomorphisms). By a Σ-algebra is meant a pair
A = (A,F ), where A is a set and F a Σ-algebra structure on A, i.e.,
a morphism F = (Fn)n∈ℕ in Setℕ from Σ to O(A), the family of the
finitary operations on the set A, which is O(A) = (Hom(An, A))n∈ℕ
(for an n ∈ ℕ and a ¾ ∈ Σn, to simplify notation we let F¾ stand for
Fn(¾)). A Σ-homomorphism from a single-sorted algebra A to another
B = (B,G), is a triple (A, f,B), written as f : A //B, where f is a
mapping from A to B that preserves the structure, i.e., such that, for
every n in ℕ, every ¾ in Σn, and every (ai)i∈n in An, it happens that

f(F¾((ai)i∈n)) = G¾(f
n((ai)i∈n)).

There exists a contravariant functor Alg from the category Sig, of
many-sorted signatures, to Cat. Its object mapping sends each many-
sorted signature Σ = (S,Σ) to Alg(Σ) = Alg(Σ), the category of
Σ-algebras; its arrow mapping sends each many-sorted signature mor-
phism d = (k, d) : Σ //Λ to the functor Alg(d) = d∗ from Alg(Λ)
to Alg(Σ) defined as follows: its object mapping sends each Λ-algebra
B = (B,G) to the Σ-algebra d∗(B) = (Bk, G

d), where Gd is the com-
position of the S★ × S-sorted mappings d from Σ to Λk★×k and Gk★×k

from Λk★×k to OT (B)k★×k (for ¾ ∈ Σw,s, to shorten notation, we let
Gd(¾) stand for the value of Gd at ¾); its arrow mapping sends each
Λ-homomorphism f from B to B′ to the Σ-homomorphism d∗(f) = fk
from d∗(B) to d∗(B′).
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The category Alg, of many-sorted algebras and many-sorted algebra
homomorphisms has as objects the pairs (Σ,A), where Σ is a many-
sorted signature and A a Σ-algebra, and as morphisms from (Σ,A)
to (Λ,B), the pairs (d, f), with d a many-sorted signature morphism
from Σ to Λ and f a Σ-homomorphism from A to d∗(B).

Moreover, we agree on the following notation and terminology. For
a many-sorted signature Σ and an S-sorted set of variables X, TΣ(X)
is the free Σ-algebra on X, and ´X is the insertion (of the generators)
X into TΣ(X), the underlying S-sorted set of TΣ(X). For a Σ-algebra
A and a valuation f of the S-sorted set of variables X in A, i.e., an
S-sorted mapping f from X to A, we will denote by f ♯ the canoni-
cal extension of f to TΣ(X), i.e., the unique Σ-homomorphism from
TΣ(X) to A such that f ♯ ∘ ´X = f .

2. The institution associated with the heterogeneous
first-order logic

The institution Ht, of heterogeneous, or many-sorted, first-order logic,
is defined as follows. The category SigHt, of heterogeneous first-order
signatures, has as objects the quadruples S = (S,Σ,Π, j), where S is
a set of sorts in 퓤 such that 0 < card(S) ≤ ℵ0, Σ an S-sorted sig-
nature (thus Σ = (S,Σ) is a many-sorted signature), Π an S-sorted

predicate domain, i.e., an object of the category SetS
★−{¸S}, where

¸S denotes the empty word on S, and j a surjective mapping from
V (= { vn ∣ n ∈ ℕ }) to S such that, for every s ∈ S, j−1[s], the fiber of j
at s, is a countably infinite set; and as morphisms from S = (S,Σ,Π, j)
to S ′ = (S ′,Σ′,Π′, j′) the triples (ℓ, d, p), where ℓ : S //S ′ is a mor-
phism in Set, d : Σ //Σ′

ℓ★×ℓ a morphism in Sig(S) (thus d = (ℓ, d) is
a many-sorted signature morphism from Σ to Σ′), and p : Π //Π′

ℓ★ a

morphism in SetS
★−{¸S}, such that the following diagram commutes

∐
w∈S★−{¸S}Πw

∐
w∈S★−{¸S} pw //

rkΠ

²²

∐
w∈S★−{¸S} Π

′
ℓ★(w)

rkΠ′

²²
S★ − {¸S}

ℓ★
// S ′★ − {¸S′}

where, for every w ∈ S★ − {¸S}, rkΠ sends (¼,w) ∈ Πw × {w} to w,
and rkΠ′ sends (¼′, ℓ★(w)) ∈ Π′

ℓ★(w)×{ℓ★(w)} to ℓ★(w), ¸S′ is the empty
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word on S ′, and, by abuse of notation, we let ℓ★ stand also for the
bi-restriction of ℓ★ to S★ − {¸S} and S ′★ − {¸S′}, and, in addition, ℓ
satisfies the condition ℓ ∘ j = j′. Let us notice that from the equation
ℓ ∘ j = j′ it follows that, for every s ∈ S, j−1[s] is included in j′−1[ℓ(s)],
and that ℓ is surjective.

Our next goal is to define a contravariant functor ModHt from SigHt

to Cat, i.e., a covariant functor ModHt : (SigHt)op //Cat. But before

doing that we agree that, for an S in SigHt, ModHt(S) denotes the
category of pointed heterogeneous S-algebraic systems (we notice that
the term “algebraic system” comes from the terminology coined by A.
I. Mal’cev in [13], p. 32), i.e., the category which has as objects the
quadruples A = (A,F,R, a), where (A,F ) is a Σ = (S,Σ)-algebra such

that, for every sort s in S, As ∕= ∅, R is a mapping in SetS
★−{¸S} from

Π to ℛS(A) = (Sub(Aw))w∈S★−{¸S}, where, for every w ∈ S★ − {¸S},
Sub(Aw) is the set of all subsets of Aw, and a = (as)s∈S ∈ ∏

s∈S As;
and as morphisms from A = (A,F,R, a) to A′ = (A′, F ′, R′, a′) those
Σ-homomorphisms f from (A,F ) to (A′, F ′) such that, for each w in
S★−{¸S}, each ¼ ∈ Πw, and each x ∈ Aw, if x ∈ R¼, then fw(x) ∈ R′

¼,
and, for each s ∈ S, fs(as) = a′s. Let us denote by ModHt the contravari-
ant functor from SigHt to Cat which sends S in SigHt to ModHt(S)
and a morphism (ℓ, d, p) from S to S ′ to the functor ModHt(ℓ, d, p)
from ModHt(S ′) to ModHt(S) which assigns to A′ = (A′, F ′, R′, a′)
precisely (A′

ℓ, F
′
ℓ★×ℓ ∘ d,R′

ℓ★ ∘ p, (a′ℓ(s))s∈S). To shorten notation, for ev-

ery (w, s) ∈ S★ ×S and every ¾ ∈ Σw,s, we let F
′
d(¾) stand for the value

of F ′
ℓ★×ℓ ∘ d at ¾, and, for every w ∈ S★ − {¸S} and every ¼ ∈ Πw, we

let R′
p(¼) stand for the value of R′

ℓ★ ∘ p at ¼.

We next turn to defining a functor SenHt from SigHt to Set. But
before doing that we notice that, given a heterogeneous first-order
signature S = (S,Σ,Π, j), for its underlying many-sorted signature
Σ = (S,Σ), we haveTΣ((j

−1[s])s∈S), the freeΣ-algebra on the S-sorted
set (j−1[s])s∈S. Moreover, for the logical signature Λ(S) = (Λn(S))n∈ℕ
(which, as a matter of fact, is an example of a single-sorted signature),
where Λ1(S) = {¬} ∪ {∀(v, s) ∣ (v, s) ∈ ∪

s∈S(j
−1[s] × {s})}, Λ2(S) =

{∧,∨,→}, and Λn(S) = ∅, if n ∕= 1, 2, we have FmHt(S), the Λ(S)-
algebra of all heterogeneous S-formulas, which is the free Λ(S)-algebra
on AtHt(S) = ∪

(w,¼)∈∐w∈S★−{¸S} Πw
({¼} × TΣ((j

−1[s])s∈S)w), the set of

all heterogeneous S-atomic formulas. Then let the object mapping of
the functor SenHt from SigHt to Set be defined by sending S in SigHt
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to SenHt(S), the set of all heterogeneous S-sentences. Our next ob-
jective is to define the morphism mapping of the functor SenHt which,
for every morphism (ℓ, d, p) : S //S ′, must be a mapping SenHt(ℓ, d, p)

from SenHt(S) to SenHt(S ′). Let (ℓ, d, p) be a morphism from S to
S ′, then, by applying the functor d∗ from Alg(Σ′) to Alg(Σ), where
d = (ℓ, d), to the free Σ′-algebra TΣ′((j′−1[s′])s′∈S′), we obtain the
Σ-algebra d∗(TΣ′((j′−1[s′])s′∈S′)). Moreover, from the natural embed-
ding inj,j′ of (j

−1[s])s∈S into ((j′−1[s′])s′∈S′)ℓ = (j′−1[ℓ(s)])s∈S, we ob-
tain, by the universal property of the free Σ-algebra on the S-sorted
set (j−1[s])s∈S, the Σ-homomorphism in♯

j,j′ from TΣ((j
−1[s])s∈S) to

d∗(TΣ′((j′−1[s′])s′∈S′)). In addition, for every w ∈ S★−{¸S} and every
¼ ∈ Πw, we have the mapping tj,j

′
w,¼ from (TΣ((j

−1[s])s∈S)w to AtHt(S ′)
which sends (Pi)i∈∣w∣ in (TΣ((j

−1[s])s∈S)w to (p(¼), ((in♯
j,j′)wi

(Pi))i∈∣w∣)
in AtHt(S ′). From the family of mappings tj,j

′
= (tj,j

′
w,¼)w∈S★−{¸S},¼∈Πw

we obtain, by the universal property of the coproduct, the mapping
AtHt(tj,j

′
) from AtHt(S) to AtHt(S ′). Furthermore, the S-sorted map-

ping inj,j′ from (j−1[s])s∈S to (j′−1[ℓ(s)])s∈S determines a morphism
inj,j′ from the single-sorted signature Λ(S) to the single-sorted signature
Λ(S ′). From this we conclude that there exists a forgetful functor from
the category Alg(Λ(S ′)) to the category Alg(Λ(S)). Let us denote by

in
∗
j,j′(Fm

Ht(S ′)) the value of the aforementioned functor at FmHt(S ′),
the free Λ(S ′)-algebra on AtHt(S ′). Then, by the universal property
of the free Λ(S)-algebra on AtHt(S), there exists a unique Λ(S)-homo-

morphism AtHt(tj,j
′
)♯ from FmHt(S) to in

∗
j,j′(Fm

Ht(S ′)) such that the
following diagram (in Set) commutes

AtHt(S)
´AtHt(S)

//

AtHt(tj,j
′
)

²²

FmHt(S)

AtHt(tj,j
′
)♯

²²

AtHt(S ′) ´AtHt(S′)
// in

∗
j,j′(Fm

Ht(S ′))

where ´AtHt(S) is the canonical embedding of AtHt(S) into FmHt(S), the
underlying set of FmHt(S), and ´AtHt(S′) the canonical embedding of

AtHt(S ′) into in
∗
j,j′(Fm

Ht(S ′)), the underlying set of in
∗
j,j′(Fm

Ht(S ′)).
Since the direct image of SenHt(S) under the mapping AtHt(tj,j

′
)♯ is in-

cluded in SenHt(S ′), we define the mapping SenHt(ℓ, d, p) from SenHt(S)
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to SenHt(S ′) as the bi-restriction of the mapping AtHt(tj,j
′
)♯ to SenHt(S)

and SenHt(S ′).
Finally, let ∣=Ht be the family (∣=Ht

S )S∈SigHt , where, for each S ∈ SigHt,

∣=Ht
S is the satisfaction relation associated with S (see in this respect

the comment of Monk in [14], p. 484).
In this way we have obtained Ht = (SigHt,ModHt, SenHt, ∣=Ht), the in-

stitution canonically associated with the heterogeneous first-order logic.

3. The institution associated with the homogeneous
first-order logic

The institution Hm, of homogeneous, or single-sorted, first-order
logic, is defined as follows. The category SigHm, of homogeneous, or
single-sorted, first-order signatures, has as objects the ordered triples
S = (Σ,Π, (¼s)s∈S), where Σ is a signature, i.e., an object of Setℕ, Π
a predicate domain, i.e., an object of Setℕ−1, and (¼s)s∈S an injective
mapping from S to Π1 (the set of all unary predicate symbols), where
S is a set in 퓤 such that 0 < card(S) ≤ ℵ0; and as morphisms from
S = (Σ,Π, (¼s)s∈S) to S ′ = (Σ′,Π′, (¼′

s′)s′∈S′) the triples (ℓ, d, p), where
ℓ : S //S ′ is a surjective mapping, d = (dn)n∈ℕ : Σ //Σ′ a morphism

in Setℕ, and p = (pn)n∈ℕ−1 : Π //Π′ a morphism in Setℕ−1, such that,
for every sort s ∈ S, p1(¼s) = ¼′

ℓ(s), i.e., p1 sends, for every sort s ∈ S,

in a coherent way (i.e., taking into account the surjective mapping ℓ), a
distinguished predicate symbol ¼s in the homogeneous first-order signa-
ture S to the distinguished predicate symbol ¼′

ℓ(s) in the homogeneous

first-order signature S ′.
Let us notice that the definition which we have provided of the con-

cept of single-sorted first-order signature is a particular case of the
following notion: A signature is an ordered quadruple (Σ,Σ′,Π,Π′),
where Σ and Π are as above, but Σ′ is a subfamily of Σ, i.e., for every
n ∈ ℕ, Σ′

n ⊆ Σn and Π′ is a subfamily of Π, i.e., for every n ∈ ℕ − 1,
Π′

n ⊆ Πn. In particular, if, for every n ∈ ℕ, Σ′
n = ∅ and, for every

n ∈ ℕ−1, Π′
n = ∅, then one obtains the ordinary first-order signatures.

The remaining components of Hm, i.e., the functor ModHm from
(SigHm)op to Cat, the functor SenHm from SigHm to Set, and the fam-
ily ∣=Hm= (∣=Hm

S )S∈SigHm of satisfaction relations, are defined as usual,
but taking into account that, for any homogeneous first-order signature
S = (Σ,Π, (¼s)s∈S), an homogeneous S-algebraic system A will be re-
garded as a quadruple (A,F,R, a) consisting of a Σ-algebra (A,F ), a
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mapping R in Setℕ−1 from Π to ℛ(A) = (Sub(An))n∈ℕ−1, where, for
every n ∈ ℕ − 1, Sub(An) is the set of all n-ary relations on A, and a
mapping a from S to A such that, for every s ∈ S, as ∈ R¼s(⊆ A).

In this way we have obtained Hm = (SigHm,ModHm, SenHm, ∣=Hm),
the institution canonically associated with the homogeneous first-order
logic.

4. The transformation (DU, ®, ¯) from Ht to Hm

We begin by defining the functor DU, of Domain Unification, from
the category SigHt to the category SigHm. Let S = (S,Σ,Π, j) be a
heterogeneous first-order signature, then DU(S) is the homogeneous
first-order signature (ΣDU,ΠDU, inS), where, for every n ∈ ℕ, ΣDU

n , the
set of all n-ary operation symbols, is

∐
(w,s)∈Sn×S Σw,s, for every n ∕= 1,

ΠDU
n , the set of all n-ary predicate symbols, is

∐
w∈Sn Πw, Π

DU
1 , the set

of all unary predicate symbols, is (
∐

w∈S1 Πw)
∐

S, and, finally, inS is
the canonical embedding of S into ΠDU

1 . Let us notice that thus defined
the object mapping of the functor DU takes care of the sorts, precisely
by adding new unary predicate symbols: concretely those which occur
in the second factor of ΠDU

1 . The definition of the morphism mapping
of DU is as follows. Let (ℓ, d, p) be a morphism from S = (S,Σ,Π, j) to
S ′ = (S ′,Σ′,Π′, j′). Then DU(ℓ, d, p) is the morphism from DU(S) =
(ΣDU,ΠDU, inS) to DU(S ′) = (Σ′DU,Π′DU, inS′) which has as morphism
from S to S ′ precisely to ℓ, as morphism from ΣDU to Σ′DU the family
of mappings (

∐
(w,s)∈Sn×S dw,s)n∈ℕ, and as morphism from ΠDU to Π′DU

the family of mappings defined, for n = 1, as (
∐

w∈S1 pw)
∐

ℓ, and, for
n ∈ ℕ − 1, as

∐
w∈Sn pw. It follows immediately that thus defined DU

is a functor from the category SigHt to the category SigHm.
Following this we define, making use of the theorem of Herbrand-

Schmidt-Wang, a natural transformation ¯ from the functor ModHt

to the functor ModHm ∘ DUop. Let S be a heterogeneous first-order
signature, then ¯S is the functor from ModHt(S) to ModHm(DU(S))
which sends A = (A,F,R, a) to (

∐
A,F ∗, R∗, a∗), where, for every

(w, s) ∈ S★ × S and every ¾ ∈ Σw,s, F ∗
((w,s),¾) is the mapping from

(
∐

A)∣w∣ to
∐

A which sends (ai, wi)i∈∣w∣ in (
∐

A)∣w∣ to (F¾((ai)i∈∣w∣), s)
in

∐
A, if, for every i ∈ ∣w∣, ai ∈ Awi

, and sends (ai, wi)i∈∣w∣ to (as, s),
otherwise; for every w ∈ S★−S1 and every ¼ ∈ Πw, R

∗
(¼,w) is the subset

of (
∐

A)∣w∣ defined as follows

{x ∈ (
∐

A)∣w∣ ∣ ∃r ∈ R¼(∀i ∈ ∣w∣(xi = (ri, wi)))},
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for every w ∈ S★ such that ∣w∣ = 1 and every ¼ ∈ Πw, R
∗
((¼,w),0) is

defined as R∗
(¼,w), while, for every s ∈ S, R∗

(s,1) is defined as the cartesian

product As × {s}; finally, a∗ is (as, s)s∈S. The definition of ¯S on the
morphisms is straightforward. In fact, if f is a morphism from A =
(A,F,R, a) to A′ = (A′, F ′, R′, a′), then ¯S(f) = (¯S(A),

∐
f, ¯S(A′)).

It is easy to check that thus defined ¯ is a natural transformation from
the functor ModHt to the functor ModHm ∘DUop.

In addition, since we have a natural rule for translating heteroge-
neous statements into homogeneous statements, this allows us to de-
fine a natural transformation ® from the functor SenHt to the functor
SenHm ∘ DU. Let S be a heterogeneous first-order signature, then ®S
is the mapping from SenHt(S) to SenHm(DU(S)) which sends an het-
erogeneous S-sentence ' to the homogeneous DU(S)-sentence ®S(')
obtained from ' by substituting simultaneously, for each expression of
the form ∀(v, s)Ã in ' an expression of the form ∀v(¼s(v) → ®S(Ã))
(with the understanding that different variables in ' are replaced by
different variables in ®S(')).

Also, by the theorem of Herbrand-Schmidt-Wang, we have that, for
every heterogeneous first-order signature S, every pointed heteroge-
neous S-algebraic system A, and every heterogeneous S-sentence ',
A ∣=Ht

S ' if and only if ¯S(A) ∣=Hm
DU(S) ®S(') (see, e.g., Proposition

29.28, p. 485 in [14]). Moreover, also by Proposition 29.28, p. 485
in [14], ¯S(A) is a model of the set of homogeneous DU(S)-sentences
Φ(S), which, we recall, was defined in the first section of this article.

Therefore we have obtained a transformation between institutions
(DU, ®, ¯) from the institution Ht to the institution Hm.

It seems appropriate to mention that, concerning the functor DU,
the theorem of Herbrand-Schmidt-Wang obstructs the existence of a
natural transformation from ModHm ∘ DUop to ModHt. The essential
reason for this obstruction is that it is not always possible to associate,
in a natural way, a heterogeneous algebraic system to a homogeneous
algebraic system. However, by the same theorem, for every heteroge-
neous first-order signature S, it is possible to obtain a partial functor
¯§
S from ModHm(DU(S)) to ModHt(S) in such a way that the fam-

ily ¯§ = (¯§
S)S∈SigHt is natural in S. Moreover, for each heterogeneous

first-order signature S, each model B of Φ(S), and each heterogeneous

S-sentence ', ¯§
S(B) ∣=Ht

S ' if and only if B ∣=Hm
DU(S) ®S(').

For a fuller treatment of this topic we refer the reader to [2] (we notice
that the first author of this article also defined in [2], inter alia, a certain
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type of 2-cell among institution morphisms from which he obtained a 2-
category of institutions and a 2-functor from this 2-category to another
2-category, with 0-cells the categories of theories canonically associated
with the institutions).

Remark. In connection with the problem discussed in the last para-
graph of this section, i.e., the obstruction to the existence of a natural
transformation from ModHm ∘ DUop to ModHt, we notice that, for ev-
ery heterogeneous first-order signature S, the partial functor ¯§

S from
ModHm(DU(S)) to ModHt(S) can, obviously, be redefined in such a
way that it becomes a functor from a convenient category of algebraic
systems. In fact, it suffices to consider only those algebraic systems
satisfying the right set of axioms, i.e., the set Φ(S). More accurately,
to this end one would need to define a theoroidal comorphism (see [8],
p. 292, for this notion), that translates many-sorted signatures into
single-sorted specifications, and where sentence translation is covariant
and model reduction is contravariant —in this case, the model reduc-
tion functor takes apart the underlying set of the algebraic system into
several ones as prescribed by the sort predicate symbols. Then the
model reduction is just an adjoint of the model translation component
in our present formulation.

We should also notice, paraphrasing and in complete coincidence with
what Ljapin says (in [11], p. 32) about the reduction of semigroups of
partial transformations to semigroups of transformations, that it is not
always expedient to reduce partial functors to functors, because, in the
transition, some properties can be lost.

Remark. For future research it is an idea worth carrying out to ex-
tend the present investigation to the concept of institution defined by
Goguen and Burstall in [7]. We recall that in [7] the sentence func-
tor Sen is a Cat-valued functor (instead of being, simply, a Set-valued
functor as in [6]) and where together with the Satisfaction Condition
there is an additional axiom: the Soundness Condition, according to
which, for every signature Σ in Sign, every model M in Mod(Σ), and
every morphism D from ' to Ã in Sen(Σ), the category of Σ-sentences
and Σ-morphisms (= Σ-proofs), if M ∣=Σ ', then M ∣=Σ Ã.
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a comorphism from Ht to the institution of the presentations of Hm.
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[8] J. Goguen and G. Roşu, Institution morphisms, Formal Aspects of Com-
puting, 13 (2002), pp. 274–307.

[9] J. Herbrand, Recherches sur la théorie de la démonstration, Thesis at
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